Chuyen de 4 -Cac bai toan chia het cua SN

Nhấn vào đây để tải về
Nhắn tin cho tác giả
Báo tài liệu sai quy định
Xem toàn màn hình
Mở thư mục chứa tài liệu này
(Tài liệu chưa được thẩm định)
Nguồn: Sưu tầm trên Internet
Người gửi: Vũ Ngọc Kính (trang riêng)
Ngày gửi: 19h:45' 12-06-2012
Dung lượng: 46.7 KB
Số lượt tải: 335
Số lượt thích: 0 người
CHUYÊN ĐỀ 4 - CÁC BÀI TOÁN VỀ SỰ CHIA HẾT CỦA SỐ NGUYÊN
A. MỤC TIÊU:
* Củng cố, khắc sâu kiến thức về các bài toán chia hết giữa các số, các đa thức
* HS tiếp tục thực hành thành thạo về các bài toán chứng minh chia hết, không chia hết, sốnguyên tố, số chính phương…
* Vận dụng thành thạo kỹ năng chứng minh về chia hết, không chia hết… vào các bài toán cụ thể
B.KIẾN THỨC VÀ CÁC BÀI TOÁN:
I. Dạng 1: Chứng minh quan hệ chia hết
1. Kiến thức:
* Để chứng minh A(n) chia hết cho một số m ta phân tích A(n) thành nhân tử có một nhân tử làm hoặc bội của m, nếu m là hợp số thì ta lại phân tích nó thành nhân tử có các đoi một nguyên tố cùng nhau, rồi chứng minh A(n) chia hết cho các số đó
* Chú ý:
+ Với k số nguyên liên tiếp bao giờ củng tồn tại một bội của k
+ Khi chứng minh A(n) chia hết cho m ta xét mọi trường hợp về số dư khi chia A(n) cho m
+ Với mọi số nguyên a, b và số tự nhiên n thì:



2. Bài tập:

2. Các bài toán
Bài 1: chứng minh rằng
a) 251 - 1 chia hết cho 7 b) 270 + 370 chia hết cho 13
c) 1719 + 1917 chi hết cho 18 d) 3663 - 1 chia hết cho 7 nhưng không chia hết cho 37
e) 24n -1 chia hết cho 15 với n( N
Giải
a) 251 - 1 = (23)17 - 1  23 - 1 = 7
b) 270 + 370 (22)35 + (32)35 = 435 + 935  4 + 9 = 13
c) 1719 + 1917 = (1719 + 1) + (1917 - 1)
1719 + 1  17 + 1 = 18 và 1917 - 1  19 - 1 = 18 nên (1719 + 1) + (1917 - 1)
hay 1719 + 1917  18
d) 3663 - 1  36 - 1 = 35  7
3663 - 1 = (3663 + 1) - 2 chi cho 37 dư - 2
e) 2 4n - 1 = (24) n - 1  24 - 1 = 15
Bài 2: chứng minh rằng
a) n5 - n chia hết cho 30 với n ( N ;
b) n4 -10n2 + 9 chia hết cho 384 với mọi n lẻ n( Z
c) 10n +18n -28 chia hết cho 27 với n( N ;
Giải:
a) n5 - n = n(n4 - 1) = n(n - 1)(n + 1)(n2 + 1) = (n - 1).n.(n + 1)(n2 + 1) chia hết cho 6 vì
(n - 1).n.(n+1) là tích của ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 (*)
Mặt khác n5 - n = n(n2 - 1)(n2 + 1) = n(n2 - 1).(n2 - 4 + 5) = n(n2 - 1).(n2 - 4 ) + 5n(n2 - 1)
= (n - 2)(n - 1)n(n + 1)(n + 2) + 5n(n2 - 1)
Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5
5n(n2 - 1) chia hết cho 5
Suy ra (n - 2)(n - 1)n(n + 1)(n + 2) + 5n(n2 - 1) chia hết cho 5 (**)
Từ (*) và (**) suy ra đpcm
b) Đặt A = n4 -10n2 + 9 = (n4 -n2 ) - (9n2 - 9) = (n2 - 1)(n2 - 9) = (n - 3)(n - 1)(n + 1)(n + 3)
Vì n lẻ nên đặt n = 2k + 1 (k  Z) thì
A = (2k - 2).2k.(2k + 2)(2k + 4) = 16(k - 1).k.(k + 1).(k + 2)  A chia hết cho 16 (1)
Và (k - 1).k.(k + 1).(k + 2) là tích của 4 số nguyên liên tiếp nên A có chứa bội của 2, 3, 4 nên A là bội của 24 hay A chia hết cho 24 (2)
Từ (1) và (2) suy ra A chia hết cho 16. 24 = 384
c) 10 n +18n -28 = ( 10 n -